Publications by authors named "H N Hutson"

For such a thin tissue, the aortic valve possesses an exquisitely complex, multi-layered extracellular matrix (ECM), and disruptions to this structure constitute one of the earliest hallmarks of fibrocalcific aortic valve disease (CAVD). The native valve structure provides a challenging target for engineers to mimic, but the development of advanced, ECM-based scaffolds may enable mechanistic and therapeutic discoveries that are not feasible in other culture or in vivo platforms. This review first discusses the ECM changes that occur during heart valve development, normal aging, onset of early-stage disease, and progression to late-stage disease.

View Article and Find Full Text PDF

Microarchitectural features of collagen-rich extracellular matrices provide the mechanical foundation for tissue function and exhibit topographical cues that influence cellular behavior including proliferation, migration and protein expression. Preservation of tissue microarchitecture is required for accurate evaluation of tissue characteristics and pathology. It is unclear whether common tissue preservation methods possess equal ability to preserve microarchitecture.

View Article and Find Full Text PDF

Disorganization of the valve extracellular matrix (ECM) is a hallmark of calcific aortic valve disease (CAVD). However, while microarchitectural features of the ECM can strongly influence the biological and mechanical behavior of tissues, little is known about the ECM microarchitecture in CAVD. In this work, we apply advanced imaging techniques to quantify spatially heterogeneous changes in collagen microarchitecture in CAVD.

View Article and Find Full Text PDF

Fibrotic diseases occur in virtually every tissue of the body and are a major cause of mortality, yet they remain largely untreatable and poorly understood on a mechanistic level. The development of anti-fibrotic agents has been hampered, in part, by the insufficient fibrosis biomimicry provided by traditional in vitro platforms. This review focuses on recent advancements toward creating 3-D platforms that mimic key features of fibrosis, as well as the application of novel imaging and sensor techniques to analyze dynamic extracellular matrix remodeling.

View Article and Find Full Text PDF