Unlabelled: Despite the expression of homologous phototransduction components, the molecular basis for differences in light-evoked responses between rod and cone photoreceptors remains unclear. We examined the role of cGMP phosphodiesterase (PDE6) in this difference by expressing cone PDE6 (PDE6C) in rd1/rd1 rods lacking rod PDE6 (PDE6AB) using transgenic mice. The expression of PDE6C rescues retinal degeneration observed in rd1/rd1 rods.
View Article and Find Full Text PDFBackground: The purpose of this project was to identify short hairpin RNA (shRNA) sequences that can suppress expression of human CAPN5 in which gain-of-function mutants cause autosomal dominant neovascular inflammatory vitreoretinopathy (ADNIV). We created HEK293T cells that stably express an ADNIV disease allele, CAPN5-p.R243L.
View Article and Find Full Text PDFMutations in the key rod phototransduction enzyme phosphodiesterase 6 (PDE6) are known to cause recessive retinitis pigmentosa in humans. Mouse models of mutant PDE6 represent a common approach to understanding the mechanisms of visual disorders related to PDE6 defects. Mutation N605S in the PDE6B subunit is linked to atypical retinal degeneration 3 (atrd3) in mice.
View Article and Find Full Text PDFPhosphodiesterase-6 (PDE6) is the key effector enzyme of the phototransduction cascade in rods and cones. The catalytic core of rod PDE6 is a unique heterodimer of PDE6A and PDE6B catalytic subunits. The functional significance of rod PDE6 heterodimerization and conserved differences between PDE6AB and cone PDE6C and the individual properties of PDE6A and PDE6B are unknown.
View Article and Find Full Text PDFPDE6 (phosphodiesterase-6) is the effector molecule in the vertebrate phototransduction cascade. Progress in understanding the structure and function of PDE6 has been hindered by lack of an expression system of the enzyme. Here we report ectopic expression and analysis of compartmentalization and membrane dynamics of the enhanced green fluorescent protein (EGFP) fusion protein of human cone PDE6C in rods of transgenic Xenopus laevis.
View Article and Find Full Text PDF