Publications by authors named "H Mundoor"

Biaxial nematic liquid crystals are fascinating systems sometimes referred to as the Higgs boson of soft matter because of experimental observation challenges. Here we describe unexpected states of matter that feature biaxial orientational order of colloidal supercritical fluids and gases formed by sparse rodlike particles. Colloidal rods with perpendicular surface boundary conditions exhibit a strong biaxial symmetry breaking when doped into conventional chiral nematic fluids.

View Article and Find Full Text PDF

Self-assembly of colloidal particles into predefined structures is a promising way to design inexpensive manmade materials with advanced macroscopic properties. Doping of nematic liquid crystals (LCs) with nanoparticles has a series of advantages in addressing these grand scientific and engineering challenges. It also provides a very rich soft matter platform for the discovery of unique condensed matter phases.

View Article and Find Full Text PDF

Colloidal rods immersed in a thermotropic liquid-crystalline solvent are at the basis of so-called hybrid liquid crystals, which are characterized by tunable nematic fluidity with symmetries ranging from conventional uniaxial nematic or antinematic to orthorhombic [Mundoor et al., Science 360, 768 (2018)SCIEAS0036-807510.1126/science.

View Article and Find Full Text PDF

Chemical organization in reaction-diffusion systems offers a strategy for the generation of materials with ordered morphologies and structural hierarchy. Periodic structures are formed by either molecules or nanoparticles. On the premise of new directing factors and materials, an emerging frontier is the design of systems in which the precipitation partners are nanoparticles and molecules.

View Article and Find Full Text PDF

The physical behavior of anisotropic charged colloids is determined by their material dielectric anisotropy, affecting colloidal self-assembly, biological function, and even out-of-equilibrium behavior. However, little is known about anisotropic electrostatic screening, which underlies all electrostatic effective interactions in such soft or biological materials. In this work, we demonstrate anisotropic electrostatic screening for charged colloidal particles in a nematic electrolyte.

View Article and Find Full Text PDF