The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved.
View Article and Find Full Text PDFMany solid tumours (e.g. sarcoma, carcinoma and lymphoma) form a disorganized neo-vasculature that initiates uncontrolled vessel formation to support tumour growth.
View Article and Find Full Text PDFDespite advances in MRI, the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neo-adjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterization of cancer tissues. We report proof-of-concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced tissue deformations.
View Article and Find Full Text PDFUltrasound accelerates healing in fractured bone; however, the mechanisms responsible are poorly understood. Experimental setups and ultrasound exposures vary or are not adequately characterized across studies, resulting in inter-study variation and difficulty in concluding biological effects. This study investigated experimental variability introduced through the cell culture platform used.
View Article and Find Full Text PDFObjectives: Despite advances in MRI the detection and characterisation of lymph nodes in rectal cancer remains complex, especially when assessing the response to neoadjuvant treatment. An alternative approach is functional imaging, previously shown to aid characterisation of cancer tissues. We report proof of concept of the novel technique Contrast-Enhanced Magneto-Motive Ultrasound (CE-MMUS) to recover information relating to local perfusion and lymphatic drainage, and interrogate tissue mechanical properties through magnetically induced deformations.
View Article and Find Full Text PDF