Publications by authors named "H Muguruma"

We demonstrated the electrochemical detection of procyanidins in peanut skin, which is often a waste product of the food industry, using a carbon nanotube electrode. Procyanidins, the main ingredients of peanut skin, are oligomers of catechin or epicatechin; therefore, they have various forms such as dimers, trimers, and a different number of linkages between monomers. Quantification using traditional high-performance liquid chromatography-mass spectroscopy (HPLC-MS) is tedious, because many peaks can be traced.

View Article and Find Full Text PDF

To encourage and guide antimicrobial stewardship team (AST) activity and promote appropriate antibiotic use, we studied the impact of day of the week on the initiation and discontinuation of antibiotic administration. This was a multicenter observational study conducted at 8 Japanese hospitals from April 1 to September 30, 2019, targeting patients who underwent treatment with broad-spectrum antibiotics, such as anti-methicillin-resistant Staphylococcus aureus agents and anti-pseudomonal agents. We compared the weekly numbers of initiations and discontinuations of antibiotic prescription on each day of the week or on the days after a holiday.

View Article and Find Full Text PDF

Legionella is a rare cause of mild encephalitis/encephalopathy with reversible splenial lesion, which should be considered in patients with risk factors. Brain magnetic resonance imaging (MRI) and legionella urinary antigen test can help the diagnosis since cerebrospinal fluid (CSF) can be normal.

View Article and Find Full Text PDF

This study reports on the electrochemical analysis of coffee extractions at different roasting levels by using a carbon nanotube (CNT) electrode. The roasting levels, ranging from 1 (low) to 6 (high), were determined according to the roasting time after fixing the roasting temperature. Level 1 roasting resulted in light roasted beans and level 6 in dark roasted ones.

View Article and Find Full Text PDF

Herein, an electrochemical method is presented for the detection of curcumin in food using a carbon nanotube (CNT)-carboxymethylcellulose (CMC) electrode. The CNT-CMC electrode exhibited ideal characteristics for curcumin detection, namely, a high response current and adequate peak separation toward curcumin oxidation. Cyclic voltammetry revealed two oxidation peaks.

View Article and Find Full Text PDF