Prog Mol Biol Transl Sci
March 2022
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches.
View Article and Find Full Text PDFDespite all the efforts made over years to study the cancer expression and the metastasis event, there is not a clear understanding of its origins and effective treatment. Therefore, more specialized and rapid techniques are required for studying cell behaviour under different drug-based treatments. Here we present a quantum dot signalling-based cell assay carried out in a segmental microfluidic device that allows studying the effect of anti-cancer drugs in cultured cell lines by monitoring phosphatidylserine translocation that occurs in early apoptosis.
View Article and Find Full Text PDFWe demonstrate a graphene oxide printing technology using wax printed membranes for the fast patterning and water activation transfer using pressure based mechanisms. The wax printed membranes have 50 μm resolution, longtime stability and infinite shaping capability. The use of these membranes complemented with the vacuum filtration of graphene oxide provides the control over the thickness.
View Article and Find Full Text PDFDespite the potential of antibody-coated nanoparticles (Ab-NPs) in many biological applications, there are very few successful, commercially available examples in which the carefully engineered nanomaterial has made it beyond the laboratory bench. Herein we explore the robustness and cost of protein-nanoparticle conjugation. Using multivalent polyamidoamine (PAMAM) dendrimers and dextran as crosslinkers, it was possible to retain colloidal stability during (i) NP-linker binding and (ii) the subsequent conjugation reaction between linker-coated NPs and proteins to generate monodisperse Ab-NPs.
View Article and Find Full Text PDFThere is a great demand to develop novel techniques that allow useful and complete monitoring of apoptosis, which is a key factor of several diseases and a target for drug development. Here, we present the use of a novel dual electrochemical/optical label for the detection and study of apoptosis. We combined the specificity of Annexin-V for phosphatidylserine, a phospholipid expressed in the outer membrane of apoptotic cells, with the optical and electrochemical properties of quantum dots to create a more efficient label.
View Article and Find Full Text PDF