Objectives: Diagnostic imaging decision support (DI-DS) system has emerged as an innovative evidence-based solution to decrease inappropriate diagnostic imaging. The aim of the present study was to design and evaluate a DI-DS system for cerebrovascular diseases.
Methods: The present study was an applied piece of research.
Background: Providing appropriate specialized treatment to the right patient at the right time is considered necessary in cancer management. Targeted therapy tailored to the genetic changes of each breast cancer patient is a desirable feature of precision oncology, which can not only reduce disease progression but also potentially increase patient survival. The use of artificial intelligence alongside precision oncology can help physicians by identifying and selecting more effective treatment factors for patients.
View Article and Find Full Text PDFDuring neurosurgical procedures, the neuro-navigation system's accuracy is affected by the brain shift phenomenon. One popular strategy is to compensate for brain shift using intraoperative ultrasound (iUS) registration with pre-operative magnetic resonance (MR) scans. This requires a satisfactory multimodal image registration method, which is challenging due to the low image quality of ultrasound and the unpredictable nature of brain deformation during surgery.
View Article and Find Full Text PDFObjective: The severity of atrial fibrillation (AF) can be assessed from intra-operative epicardial measurements (high-resolution electrograms), using metrics such as conduction block (CB) and continuous conduction delay and block (cCDCB). These features capture differences in conduction velocity and wavefront propagation, but ignore complementary properties such as the morphology of the action potentials. In this work, we focus on such complementary properties, and derive features to detect variations in the atrial potential waveforms.
View Article and Find Full Text PDFBackground: Since colorectal cancer is one of the most important types of cancer in the world that often leads to death, computer-aided diagnostic (CAD) systems are a promising solution for early diagnosis of this disease with fewer side effects than conventional colonoscopy. Therefore, the aim of this research is to design a CAD system for processing colorectal Computerized Tomography (CT) images using a combination of an artificial neural network and a particle swarm optimizer.
Method: First, the data set of the research was created from the colorectal CT images of the patients of Loghman-e Hakim Hospitals in Tehran and Al-Zahra Hospitals in Isfahan who underwent colorectal CT imaging and had conventional colonoscopy done within a maximum period of one month after that.