Publications by authors named "H Miyagishima"

The aim of this study was to clarify the relationship between the severity of condylar osteoarthritis (OA) and skeletal mandibular retrusion. Three-dimensional cephalometric characteristics of skeletal mandibular retrusion were analysed using computed tomography scans from 15 patients with OA and 15 without OA. Mandibular, dental, and condylar-related factors were evaluated.

View Article and Find Full Text PDF

Mammalian Polycomb group (PcG) proteins are known to function during the maintenance of spatially restricted expression of Hox cluster genes and cellular proliferation. To understand the molecular basis of PcG functions, it is important to identify the components of mammalian PcG complexes. We isolated mouse YAF2 as a protein that interacts with Ring1B, a known constituent of mammalian PcG complexes.

View Article and Find Full Text PDF

The Polycomb group (PcG) gene products form complexes that regulate chromatin configuration to mediate cellular memory to postmitotic somatic cells and postmeiotic oocytes in Drosophila melanogaster. Structural and functional similarities of PcG proteins between invertebrates and vertebrates suggest mammalian PcG proteins may be involved to imprint transcriptional status at various loci into postmitotic and postmeiotic daughter cells. To address molecular mechanisms underlying PcG-mediated cellular memory, it might be a prerequisite to understand subcellular localization of PcG proteins during mitosis and meiosis.

View Article and Find Full Text PDF

The products of the Polycomb group of genes form complexes that maintain the state of transcriptional repression of several genes with relevance to development and in cell proliferation. We have identified Ring1B, the product of the Ring1B gene (Rnf2 - Mouse Genome Informatics), by means of its interaction with the Polycomb group protein Mel18. We describe biochemical and genetic studies directed to understand the biological role of Ring1B.

View Article and Find Full Text PDF

The REV3 gene of budding yeast encodes the catalytic subunit of DNA polymerase zeta that carries out translesion DNA synthesis. While REV3-null yeast mutants are viable and exhibit normal growth, Rev3-deficient mice die around midgestation of embryogenesis, which is accompanied by massive apoptosis of cells within the embryo proper. We have investigated whether REV3 is required for the survival of mouse cells and whether the embryonic lethality caused by REV3 deficiency can be rescued by introduction of a Rev3 transgene or by inactivation of p53, the cellular gatekeeper that regulates DNA damage-induced apoptosis.

View Article and Find Full Text PDF