A microwave ion source is expected to have a long lifetime, as it has fewer consumables. Thus, we are in the process of developing a microwave ion source for ion implantation applications. In this paper, we report on a newly developed plasma chamber and the extracted P(+) beam currents.
View Article and Find Full Text PDFA filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.
View Article and Find Full Text PDFA microwave ion source is one of the long-life ion sources. In this paper, we report on the characteristics of the extracted Ar ion beam produced by a microwave ion source under various conditions, in terms of magnetic flux distribution and mass flow, and the stability of the ion beam. The measured spectra show that, under the experimental condition, almost all of produced ions were Ar(+) ions.
View Article and Find Full Text PDFA multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current.
View Article and Find Full Text PDF