Publications by authors named "H Merlitz"

Nanoparticles (NPs) that are forcefully driven through a brush-decorated nanochannel form a nonequilibrium system with a rich physical behavior, including a dynamical phase transition between two modes of propagation that correspond to either separate clusters of NPs or a continuous flow channel. The peculiar properties of this system make it an ideal benchmark candidate for a comparison of three thermostat settings, the dissipative particle dynamics (DPD), the Langevin (LGV) dynamics, and a modified LGV setup, denoted as LGV^{-}, in which the thermostatting is disabled in the direction of the driving force. We demonstrate that the choice of the thermostat has little influence on the conformations of NPs, and that, due to differences in the dissipation modes, notable differences arise in their dynamical properties, such as effective friction constants and average velocities.

View Article and Find Full Text PDF

The assembly of long-range aligned structures of two-dimensional nanosheets (2DNSs) in polymer nanocomposites (PNCs) is in urgent need for the design of nanoelectronics and lightweight energy-storage materials of high conductivity for electricity or heat. These 2DNS are thin and exhibit thermal fluctuations, leading to an intricate interplay with polymers in which entropic effects can be exploited to facilitate a range of different assemblies. In molecular dynamics simulations of experimentally studied 2DNSs, we show that the layer-forming crystallization of 2DNSs is programmable by regulating the strengths and ranges of polymer-induced entropic depletion attractions between pairs of 2DNSs, as well as between single 2DNSs and a substrate surface, by exclusively tuning the temperature and size of the 2DNS.

View Article and Find Full Text PDF

The solvophobicity-driven directional self-assembly of polymer-coated gold nanorods is a well-established phenomenon. Yet, the kinetics of this process, the origin of site-selectivity in the self-assembly, and the interplay of (attractive) solvophobic brush interactions and (repulsive) electrostatic forces are not fully understood. Herein, we use a combination of time-resolved (vis/NIR) extinction spectroscopy and finite-difference time-domain (FDTD) simulations to determine conversion profiles for the assembly of gold nanorods with polystyrene shells of distinct thicknesses into their (tip-to-tip) self-assembled structures.

View Article and Find Full Text PDF

Synthetic and natural nanomaterials with self-propelling mechanisms continue to be explored to boost chain mobility beyond normal reptation in the crowded environments of entangled chains. Here we employ scaling theory and numerical simulations to demonstrate that activating one chain end of a singular or isolated chain boosts entanglement-constrained chain reptation from the one-dimensional diffusive mobility as described by the de Gennes-Edwards-Doi model to ballistic motion along the entanglement tube contour. The active chain is effectively screened from the constraint of entanglements on length scales exceeding the tube size.

View Article and Find Full Text PDF

We consider polymer brushes in poor solvent that are grafted onto planar substrates and onto the internal and external surfaces of a cylinder using molecular dynamics simulation, self-consistent field (SCF), and mean-field theory. We derive a unified expression for the mean field free energy for the three geometrical classes. While for low grafting densities, the effect of chain elasticity can be neglected in poor solvent conditions, it becomes relevant at higher grafting densities and, in particular, for concave geometries.

View Article and Find Full Text PDF