Publications by authors named "H Mekata"

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Bovine viral diarrhea (BVD), caused by bovine viral diarrhea virus (BVDV), has a significant economic impact on affected farms worldwide. For effective disease control, it is crucial to select an appropriate vaccine based on the specific genotype of BVDV. Therefore, developing a rapid and reliable assay to detect and genotype BVDV is imperative for controlling the spread of disease.

View Article and Find Full Text PDF

Here, we report the complete genome sequence of the avian paramyxovirus serotype 9 strain duck/Miyazaki/128/2021, which was determined using the Illumina MiSeq platform. The position of the hemagglutinin-neuraminidase stop codon differed from that of the only other available completely sequenced prototype strain, duck/New York/22/1977.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is a fatal zoonosis caused by ticks in East Asia. As SFTS virus (SFTSV) is maintained between wildlife and ticks, seroepidemiological studies in wildlife are important to understand the behavior of SFTSV in the environment. Miyazaki Prefecture, Japan, is an SFTS-endemic area, and approximately 100 feral horses, called Misaki horses (Equus caballus), inhabit Cape Toi in Miyazaki Prefecture.

View Article and Find Full Text PDF

Pigs are important animals for meat production but can carry several zoonotic diseases, including the Japanese encephalitis virus, Nipah virus, and influenza viruses. Several and respiratory viruses require cleavage of envelope proteins to acquire viral infectivity and consequently, need a host protease or the addition of exogenous trypsin for efficient propagation. Host TMPRSS2 is a key protease responsible for viral cleavage.

View Article and Find Full Text PDF