Publications by authors named "H Maurice Valett"

Riverine floodplains exhibit high floral and faunal diversity as a consequence of their biophysical complexity. Extension of such niche partitioning processes to microbial communities is far less resolved or supported. Here, we evaluated the responses of aquatic biofilms diversity to environmental gradients across ten riverine floodplains with differing degrees of flow alteration and habitat diversity to assess whether complex floodplains support biofilm communities with greater biodiversity and species interactions.

View Article and Find Full Text PDF

River-floodplain systems are among the most diverse and productive ecosystems, but the effects of biophysical complexity at multiple scales on microbial biodiversity have not been studied. Here, we investigated how the hierarchical organization of river systems (i.e.

View Article and Find Full Text PDF

Nitrous oxide (N(2)O) is a potent greenhouse gas that contributes to climate change and stratospheric ozone destruction. Anthropogenic nitrogen (N) loading to river networks is a potentially important source of N(2)O via microbial denitrification that converts N to N(2)O and dinitrogen (N(2)). The fraction of denitrified N that escapes as N(2)O rather than N(2) (i.

View Article and Find Full Text PDF

The Bear Brook Watershed in Maine (BBWM) is a long-term, paired watershed experiment that addresses the effects of acid and nitrogen (N) deposition on whole watersheds. To examine stream response at BBWM, we synthesized data on organic matter dynamics, including leaf breakdown rates, organic matter inputs and standing stocks, macroinvertebrate secondary production, and nutrient uptake in treated and reference streams at the BBWM. While N concentrations in stream water and leaves have increased, the input, standing stocks, and breakdown rates of leaves, as well as macroinvertebrate production, were not responsive to acid and N deposition.

View Article and Find Full Text PDF

Small streams account for the majority of channel length in river basins worldwide and are the primary conveyors of terrestrial nutrients to rivers and ultimately the oceans. The controls of stream nutrient fluxes, however, are debated. Classical models emphasize that nutrient transport in streams integrates nutrient cycling in the terrestrial watershed while others argue that in-stream processes control nutrient flux.

View Article and Find Full Text PDF