Amelogenin (AMELX), the predominant matrix protein in enamel formation, contains a singular phosphorylation site at Serine 16 (S16) that greatly enhances AMELX's capacity to stabilize amorphous calcium phosphate (ACP) and inhibit its transformation to apatitic enamel crystals. To explore the potential role of AMELX phosphorylation in vivo, we developed a knock-in (KI) mouse model in which AMELX phosphorylation is prevented by substituting S16 with Ala (A). As anticipated, AMELX KI mice displayed a severe phenotype characterized by weak hypoplastic enamel, absence of enamel rods, extensive ectopic calcifications, a greater rate of ACP transformation to apatitic crystals, and progressive cell pathology in enamel-forming cells (ameloblasts).
View Article and Find Full Text PDFPathogenic bacteria secrete protein effectors to hijack host machinery and remodel their infectious niche. spp. are obligate intracellular bacteria that can cause life-threatening disease, but their absolute dependence on the host cell environment has impeded discovery of rickettsial effectors and their host targets.
View Article and Find Full Text PDFContinuously growing mouse incisors are widely used to study amelogenesis, since all stages of this process (., secretory, transition and maturation) are present in a spatially determined sequence at any given time. To study biological changes associated with enamel formation, it is important to develop reliable methods for collecting ameloblasts, the cells that regulate enamel formation, from different stages of amelogenesis.
View Article and Find Full Text PDF