Publications by authors named "H Maillotte"

We report the spectral distribution of the parametric process generated in a photonic crystal fiber pumped by a chirped pulse. The spectral correlation of four-wave mixing has been measured using the dispersive Fourier transform method. From statistical analysis of multiple shot-to-shot spectral measurements, the spectral correlation between the signal and idler photons reveals physical insights into the particular portion of the pump spectrum responsible for generating the four-wave mixing.

View Article and Find Full Text PDF

Infrared fiber materials such as chalcogenide, tellurite, and heavily germanium-doped silica glasses are attractive materials for many applications based on nonlinear optical effects such as Kerr, Raman, and Brillouin processes. Here, we experimentally demonstrate a close-to-single-frequency Brillouin fiber laser in the 2-μm wavelength region either based on tellurite () glass or on heavily germanium-doped silica glass. Our results reveal a strong enhancement of the Brillouin gain efficiency at 2 μm of more than 50 times that of standard silica optical fibers.

View Article and Find Full Text PDF

Germanosilicate glasses are substantial materials in fiber optic technology that have allowed the control of optical properties such as numerical aperture, photosensitivity, dispersion, nonlinearity, and transparency toward mid-infrared. Here, we investigate stimulated Brillouin scattering in single-mode germanosilicate core fibers with increasing GeO content from 3.6 mol% up to 98 mol%.

View Article and Find Full Text PDF

We report light-beam self-trapping triggered by the pyroelectric effect in an isolated ferroelectric thin film. Experiments are performed in an 8-μm-thick congruent undoped LiNbO(3) film bonded onto a silicon wafer. Response time two orders of magnitude faster than in bulk LiNbO(3) is reported.

View Article and Find Full Text PDF

Brillouin scattering in optical fibres is a fundamental interaction between light and sound with important implications ranging from optical sensors to slow and fast light. In usual optical fibres, light both excites and feels shear and longitudinal bulk elastic waves, giving rise to forward-guided acoustic wave Brillouin scattering and backward-stimulated Brillouin scattering. In a subwavelength-diameter optical fibre, the situation changes dramatically, as we here report with the first experimental observation of Brillouin light scattering from surface acoustic waves.

View Article and Find Full Text PDF