Publications by authors named "H M Warner"

Play behavior has been extensively studied across species, but its direct role in social relationships remains unclear. Here we use an "isolation versus separation" protocol to identify behaviors associated with relationship renewal in adolescent female rats. Members of a dyad that had been separated for 24 hr, without isolation from other peers, initially increased investigative behaviors relative to nonseparated peers; however, in contrast with social isolation, separation by itself did not increase rough-and-tumble play.

View Article and Find Full Text PDF

Pitseed goosefoot (Chenopodium berlandieri) is a free-living North American member of an allotetraploid complex that includes the Andean pseudocereal quinoa (C. quinoa). Like quinoa, pitseed goosefoot was domesticated, possibly independently, in eastern North America (subsp.

View Article and Find Full Text PDF

To mount an adaptive immune response, dendritic cells must migrate to lymph nodes to present antigens to T cells. Critical to 3D migration is the nucleus, which is the size-limiting barrier for migration through the extracellular matrix. Here, we show that inflammatory activation of dendritic cells leads to the nucleus becoming spherically deformed and enables dendritic cells to overcome the typical 2- to 3-μm diameter limit for 3D migration through gaps in the extracellular matrix.

View Article and Find Full Text PDF

Thin-film lithium niobate (TFLN) is a promising electro-optic (EO) photonics platform with high modulation bandwidth, low drive voltage, and low optical loss. However, EO modulation in TFLN is known to relax on long timescales. Instead, thermo-optic heaters are often used for stable biasing, but heaters incur challenges with cross-talk, high power, and low bandwidth.

View Article and Find Full Text PDF

Injury or disease often compromise walking dynamics and negatively impact quality of life and independence. Assessing methods to restore or improve pathological gait can be expedited by examining a global parameter that reflects overall musculoskeletal control. Center of mass (CoM) kinematics follow well-defined trajectories during unimpaired gait, and change predictably with various gait pathologies.

View Article and Find Full Text PDF