Chromatin remodelling complexes (CRC) are ATP-dependent molecular machines important for the dynamic organization of nucleosomes along eukaryotic DNA. CRCs SWI/SNF, RSC and INO80 can move positioned nucleosomes in promoter DNA, leading to nucleosome-depleted regions which facilitate access of general transcription factors. This function is strongly supported by transcriptional activators being able to interact with subunits of various CRCs.
View Article and Find Full Text PDFBinding of general transcription factors TFIID and TFIIA to basal promoters is rate-limiting for transcriptional initiation of eukaryotic protein-coding genes. Consequently, activator proteins interacting with subunits of TFIID and/or TFIIA can drastically increase the rate of initiation events. Yeast transcriptional activator Ino2 interacts with several Taf subunits of TFIID, among them the multifunctional Taf1 protein.
View Article and Find Full Text PDFTranscriptional corepressors Sin3, Cyc8 and Tup1 are important for downregulation of gene expression by recruiting various histone deacetylases once they gain access to defined genomic locations by interaction with pathway-specific repressor proteins. In this work we systematically investigated whether 17 yeast repressor proteins (Cti6, Dal80, Fkh1, Gal80, Mig1, Mot3, Nrg1, Opi1, Rdr1, Rox1, Sko1, Ume6, Ure2, Xbp1, Yhp1, Yox1 and Whi5) representing several unrelated regulatory pathways are able to bind to Sin3, Cyc8 and Tup1. Our results show that paired amphipathic helices 1 and 2 (PAH1 and PAH2) of Sin3 are functionally redundant for some regulatory pathways.
View Article and Find Full Text PDFGene expression is mediated by a series of regulatory proteins, i.e., transcription factors.
View Article and Find Full Text PDF