Background: Discussions of phenotypic robustness often consider scenarios where invariant phenotypes are optimal and assume that developmental mechanisms have evolved to buffer the phenotypes of specific traits against stochastic and environmental perturbations. However, plastic plant phenotypes that vary between environments or variable phenotypes that vary stochastically within an environment may also be advantageous in some scenarios.
Scope: Here the conditions under which invariant, plastic and variable phenotypes of specific traits may confer a selective advantage in plants are examined.
Thrombelastography (TEG)/thromboelastometry (ROTEM) devices measure viscoelastic clot strength as clot amplitude (A). Transformation of clot amplitude into clot elasticity (E with TEG; CE with ROTEM) is sometimes necessary (eg, when calculating platelet component of the clot). With TEG, clot amplitude is commonly transformed into shear modulus (G; expressed in Pa or dyn/cm) as follows: G = (5000 × A)/(100 - A).
View Article and Find Full Text PDFThe plant hormone auxin controls root epidermal cell development in a concentration-dependent manner. Root hairs are produced on a subset of epidermal cells as they increase in distance from the root tip. Auxin is required for their initiation and continued growth, but little is known about its distribution in this region of the root.
View Article and Find Full Text PDFStomatal pores of higher plants close in response to decreases in atmospheric relative humidity (RH). This is believed to be a mechanism that prevents the plant from losing excess water when exposed to a dry atmosphere and as such is likely to have been of evolutionary significance during the colonization of terrestrial environments by the embryophytes. We have conducted a genetic screen, based on infrared thermal imaging, to identify Arabidopsis genes involved in the stomatal response to reduced RH.
View Article and Find Full Text PDFRe-orientation of Arabidopsis seedlings induces a rapid, asymmetric release of the growth regulator auxin from gravity-sensing columella cells at the root apex. The resulting lateral auxin gradient is hypothesized to drive differential cell expansion in elongation-zone tissues. We mapped those root tissues that function to transport or respond to auxin during a gravitropic response.
View Article and Find Full Text PDF