Traumatic brain injuries (TBIs) are still a challenge for the field of modern medicine. Many treatment options such as autologous grafts and stem cells show limited promise for the treatment and the reversibility of damage caused by TBIs. Injury beyond the critical size necessitates the implementation of scaffolds that function as surrogate extracellular matrices.
View Article and Find Full Text PDFBiomaterials that function as tissue surrogates ought to form three dimensional structures which are conducive to cell proliferation and regeneration. Since the extracellular matrix (ECM) is composed of proteoglycans (long chain polysaccharides) and proteins, the combination of proteins and polysaccharides presents a logical strategy to mimic the ECM and guide cell growth and proliferation. Polysaccharides are distinctive scaffold materials for regeneration due to their biocompatibility, hydrophilicity, biodegradability and functional groups which may be modified to improve mechanical properties and cell signalling.
View Article and Find Full Text PDFBackground: Haemorrhagic shock is the leading cause of preventable early deaths from trauma. Acute coagulopathy on admission to a trauma unit is associated with worse outcomes. The relationship of haemorrhage to early mortality remains consistent regardless of mechanism of injury.
View Article and Find Full Text PDFAnesthesiology
March 2014
Background: Myocardial injury after noncardiac surgery (MINS) was defined as prognostically relevant myocardial injury due to ischemia that occurs during or within 30 days after noncardiac surgery. The study's four objectives were to determine the diagnostic criteria, characteristics, predictors, and 30-day outcomes of MINS.
Methods: In this international, prospective cohort study of 15,065 patients aged 45 yr or older who underwent in-patient noncardiac surgery, troponin T was measured during the first 3 postoperative days.
Objective: To audit the performance of a new level I trauma unit and trauma intensive care unit.
Methods: Data on patients admitted to the level I trauma unit and trauma intensive care unit at Inkosi Albert Luthuli Central Hospital, Durban, from March 2007 to December 2008 were retrieved from the hospital informatics system and an independent database in the trauma unit.
Results: Four hundred and seven patients were admitted; 71% of admissions were inter-hospital transfers (IHT) and 29% direct from scene (DIR).