Publications by authors named "H Lopez-Bertoni"

Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs).

View Article and Find Full Text PDF

: CSCs are critical drivers of the tumor and stem cell phenotypes of glioblastoma (GBM) cells. Chromatin modifications play a fundamental role in driving a GBM CSC phenotype. The goal of this study is to further our understanding of how stem cell-driving events control changes in chromatin architecture that contribute to the tumor-propagating phenotype of GBM.

View Article and Find Full Text PDF

The current median survival for glioblastoma (GBM) patients is only about 16 months, with many patients succumbing to the disease in just a matter of months, making it the most common and aggressive primary brain cancer in adults. This poor outcome is, in part, due to the lack of new treatment options with only one FDA-approved treatment in the last decade. Advances in sequencing techniques and transcriptomic analyses have revealed a vast degree of heterogeneity in GBM, from inter-patient diversity to intra-tumoral cellular variability.

View Article and Find Full Text PDF

Purpose: Glioblastoma (GBM) is the most common brain malignancy with median survival <2 years. Standard-of-care temozolomide has marginal efficacy in approximately 70% of patients due to MGMT expression. LP-184 is an acylfulvene-derived prodrug activated by the oxidoreductase PTGR1 that alkylates at N3-adenine, not reported to be repaired by MGMT.

View Article and Find Full Text PDF

Despite its growing use in cancer treatment, immunotherapy has been virtually ineffective in clinical trials for gliomas. The inherently cold tumor immune microenvironment (TIME) in gliomas, characterized by a high ratio of pro-tumor to anti-tumor immune cell infiltrates, acts as a seemingly insurmountable barrier to immunotherapy. Glioma stem cells (GSCs) within these tumors are key contributors to this cold TIME, often functioning indirectly through activation and recruitment of pro-tumor immune cell types.

View Article and Find Full Text PDF