Publications by authors named "H Liva Rakotondraibe"

A lichen is a symbiotic association composed of a primary mycobionts and one or more photobionts living mutualistically together, forming a distinct morphological entity beneficial to their partnership and to other associated fungi, photobionts, and bacteria that collectively make up the lichen biome. The taxonomic identification of a lichen species often requires determination of the primary mycobiont's secondary metabolites, the key morphological characteristics of the thallus, and how it relates to other lichen species as seen in DNA phylogeny. This chapter covers lichens and their bionts, taxonomic identification, and their chemical constituents as exemplified by what is found in lichen biomes, especially those endemic to North America.

View Article and Find Full Text PDF

To mitigate pyrethroid resistance in mosquito vectors of emerging and re-emerging human pathogens, there is an urgent need to discover insecticides with novel modes of action. Natural alternatives, such as extracts derived from plants, may serve as substitutes for traditional synthetic insecticides if they prove to be sustainable, cost-effective, and safe for non-target organisms. Hemp () is a sustainable plant known to produce various secondary metabolites with insecticidal properties, including terpenoids and flavonoids.

View Article and Find Full Text PDF

Covering up to early 2023The present review summarizes recent accomplishments made as part of a multidisciplinary, multi-institutional anticancer drug discovery project, wherein samples comprising higher plants were collected primarily from Southeast Asia, and also from Central America, and the West Indies. In the introductory paragraphs, a short perspective is provided on the current importance of plants in the discovery of cancer therapeutic agents, and the contributions of other groups working towards this objective are mentioned. For our own investigations, following their collection, tropical plants have been subjected to solvent extraction and biological evaluation for their antitumor potential.

View Article and Find Full Text PDF

Penicillium fungi are represented by various species and can be found worldwide and thrive in a range of environments, such as in the soil, air, and indoors, and in marine environments, as well as food products. Chemical investigation of species of this genus has led to the discovery of compounds from several structural classes with varied bioactivities. As an example, this genus has been a source of bioactive and structurally unusual steroids.

View Article and Find Full Text PDF

The U.S. endemic lichen ()-derived produced a cytotoxic paxisterol derivative named auransterol () and -citreoviridin ().

View Article and Find Full Text PDF