The chemical network governing interstellar sulfur has been the topic of unrelenting discussion for the past few decades due to the conspicuous discrepancy between its expected and observed abundances in different interstellar environments. More recently, the astronomical detections of CHCHSH and CHCS highlighted the importance of interstellar formation routes for sulfur-bearing organic molecules with two carbon atoms. In this work, we perform a laboratory investigation of the solid-state chemistry resulting from the interaction between CH molecules and SH radicals-both thought to be present in interstellar icy mantles-at 10 K.
View Article and Find Full Text PDFAromatic infrared bands (AIBs) dominate the mid-infrared spectra of many galactic and extragalactic sources. These AIBs are generally attributed to fluorescence emission from aromatic molecules. Unified efforts from experimentalists and theoreticians to assign these AIB features have recently received additional impetus with the launch of the James Webb Space Telescope (JWST) as the Mid-InfraRed Instrument (MIRI) delivers a mid-IR spectrum with greatly increased sensitivity and spectral resolution.
View Article and Find Full Text PDFPolycyclic aromatic hydrocarbons are an important component of the interstellar medium of galaxies and photochemistry plays a key role in the evolution of these species in space. Here, we explore the photofragmentation behaviour of the coronene cation (CH˙) using time-of-flight mass spectrometry. The experiments show photodissociation fragmentation channels including the formation of bare carbon clusters (C˙) and hydrocarbon chains (CH).
View Article and Find Full Text PDFPolycyclic aromatic nitrogen heterocycles (PANHs) are present in various astronomical environments where they are subjected to intense radiation. Their photodissociation pathways give crucial insights into the cycle of matter in the universe, yet so far only the dissociation characteristics of few PANHs have been investigated. Moreover, most experiments use single photon techniques that only reveal the initial dissociation step, and are thus unsuited to replicate astronomical environments and timescales.
View Article and Find Full Text PDFRecently, some of us reviewed and studied the photoionization dynamics of C60 that are of great interest to the astrochemical community as four of the diffuse interstellar bands (DIBs) have been assigned to electronic transitions in the C60+ cation. Our previous analysis of the threshold photoelectron spectrum (TPES) of C60 [Hrodmarsson et al., Phys.
View Article and Find Full Text PDF