Publications by authors named "H Lindenblatt"

Photoionization can initiate structural reorganization of molecular matter and drive formation of new chemical bonds. Here, we used time-resolved extreme ultraviolet (EUV) pump - EUV probe Coulomb explosion imaging of carbon dioxide dimer ion dynamics, that combined with ab initio molecular dynamics simulations, revealed unexpected asymmetric structural rearrangement. We show that ionization by the pump pulse induces rearrangement from the slipped-parallel (C) geometry of the neutral dimer towards a T-shaped (C) structure on the ~100 fs timescale, although the most stable slipped-parallel (C) structure of the ionic dimer.

View Article and Find Full Text PDF

High temporal resolution is essential for ultra-fast pump-probe experiments. Arrival time jitter and drift measurements, as well as their control, become critical especially when combining XUV or X-ray free-electron lasers (FELs) with optical lasers due to the large scale of such facilities and their distinct pulse generation processes. This paper presents the application of a laser pulse arrival time monitor that actively corrects the arrival time of an optical laser relative to the FEL's main optical clock.

View Article and Find Full Text PDF

The electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses.

View Article and Find Full Text PDF

Upon ionization, water forms a highly acidic radical cation HO that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive HO, OH radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser.

View Article and Find Full Text PDF

Ultrafast H and H formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H roaming that leads to H and H formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H to H increases with time delay, while it is flat at a photon energy of 70 eV.

View Article and Find Full Text PDF