Publications by authors named "H Levola"

Photofragmentation of gas-phase acetamide and acetic acid clusters produced by a supersonic expansion source has been studied using time-of-flight mass spectrometry and the partial ion yield (PIY) technique combined with tunable vacuum-ultraviolet synchrotron radiation. Appearance energies of the clusters and their fragments were experimentally determined from the PIY measurements. The effect of clusterization conditions on the formation and fragmentation of acetic acid clusters was investigated.

View Article and Find Full Text PDF

Photofragmentation of small gas-phase acetamide clusters (CHCONH) (n ≤ 10) produced by a supersonic expansion source has been studied using time-of-flight ion mass spectroscopy combined with tunable vacuum-ultraviolet (VUV) synchrotron radiation. Fragmentation channels of acetamide clusters under VUV photoionization resulting in protonated and ammoniated clusters formation were identified with the discussion about the preceding intramolecular rearrangements. Acetamide-2,2,2-d3 clusters were also studied in an experiment with a gas discharge lamp as a VUV light source; comparison with the main experiment gave insights into the mechanism of formation of protonated acetamide clusters, indicating that proton transfer from amino group plays a dominant role in that process.

View Article and Find Full Text PDF

Fragmentation of RNA nucleoside uridine, induced by carbon 1s core ionization, has been studied. The measurements by combined electron and ion spectroscopy have been performed in gas phase utilizing synchrotron radiation. As uridine is a combination of d-ribose and uracil, which have been studied earlier with the same method, this study also considers the effect of chemical environment and the relevant functional groups.

View Article and Find Full Text PDF

A photoelectron-ion-ion coincidence experiment has been carried out on the amino acid molecule cysteine after core-ionization of the O 1s, N 1s, C 1s, and S 2p orbitals. A number of different dissociation channels have been identified. Some of them show strong site-selective dependence that can be attributed to a combination of nuclear motion in the core-ionized state and Auger processes that populate different final electronic states in the dication.

View Article and Find Full Text PDF