With the rapid evolution in the automation of serial electron microscopy in life sciences, the acquisition of terabyte-sized datasets is becoming increasingly common. High resolution serial block-face imaging (SBEM) of biological tissues offers the opportunity to segment and reconstruct nanoscale structures to reveal spatial features previously inaccessible with simple, single section, two-dimensional images. In particular, we focussed here on glial cells, whose reconstruction efforts in literature are still limited, compared to neurons.
View Article and Find Full Text PDFOne will not understand the brain without an integrated exploration of structure and function, these attributes being two sides of the same coin: together they form the currency of biological computation. Accordingly, biologically realistic models require the re-creation of the architecture of the cellular components in which biochemical reactions are contained. We describe here a process of reconstructing a functional oligocellular assembly that is responsible for energy supply management in the brain and creating a computational model of the associated biochemical and biophysical processes.
View Article and Find Full Text PDFThe mechanism of rapid energy supply to the brain, especially to accommodate the heightened metabolic activity of excited states, is not well-understood. We explored the role of glycogen as a fuel source for neuromodulation using the noradrenergic stimulation of glia in a computational model of the neural-glial-vasculature ensemble (NGV). The detection of norepinephrine (NE) by the astrocyte and the coupled cAMP signal are rapid and largely insensitive to the distance of the locus coeruleus projection release sites from the glia, implying a diminished impact for volume transmission in high affinity receptor transduction systems.
View Article and Find Full Text PDFAdvances in the application of electron microscopy (EM) to serial imaging are opening doors to new ways of analyzing cellular structure. New and improved algorithms and workflows for manual and semiautomated segmentation allow us to observe the spatial arrangement of the smallest cellular features with unprecedented detail in full three-dimensions. From larger samples, higher complexity models can be generated; however, they pose new challenges to data management and analysis.
View Article and Find Full Text PDF