Publications by authors named "H Le lan"

Sodium-ion batteries (SIBs), endowed with relatively small Stokes radius and low desolvation energy for Na+, are reckoned as a promising candidate for fast-charging endeavors. However, the C-rate charging capability of practical energy-dense sodium-ion pouch cells is currently limited to ≤1C, due to the high propensity for detrimental metallic Na plating on the hard carbon (HC) anode at elevated rates. Here, an ampere-hour-level sodium-ion pouch cell capable of 3C charging is successfully developed via phosphorus (P)-sulfur (S) interphase chemistry.

View Article and Find Full Text PDF

Traditional rainfall data collection mainly relies on rain buckets and meteorological data. It rarely considers the impact of sensor faults on measurement accuracy. To solve this problem, a two-layer genetic algorithm-backpropagation (GA-BP) model is proposed.

View Article and Find Full Text PDF

Glutinous and japonica sorghum can be applied to different production processes by their amylopectin content and starch structure. However, the differences in the fine structure and physiochemistry properties of their starches, as well as their fermentation properties remain unclear. Compared with japonica sorghum, glutinous sorghum has a higher amylopectin content, short amylose chain content, relative crystallinity, and ∆H, but lower setback (SB), and starch granule size.

View Article and Find Full Text PDF

Porous liquids (PLs) have emerged as a promising class of flow porous materials, offering distinctive benefits for sustainable separation processes coupled with catalytic transformations in the chemical industry. Despite their potential, challenges remain in the realms of synthesis complexity, stability, and the strategic engineering of separation and catalytic sites. In this study, a scalable mechanochemical synthetic approach is reported to fabricate Type III PLs from solid precursors with high stability.

View Article and Find Full Text PDF

It is imperative to investigate more cost-effective, long-lasting, efficient, and reliable non-noble metal electrocatalysts for the oxygen evolution reaction (OER) in hydrogen production via water splitting. Metal-organic complexes have been extensively researched and utilized for this purpose, yet their transformation in this process remains intriguing and underexplored. To enable a comprehensive comparison, we synthesized three types of metal-organic complexes with varying morphologies using the same raw material.

View Article and Find Full Text PDF