Background: This prospective feasibility study explores Field-Cycling Imaging (FCI), a new MRI technology that measures the longitudinal relaxation time across a range of low magnetic field strengths, providing additional information about the molecular properties of tissues. This study aims to assess the performance of FCI and investigate new quantitative biomarkers at low fields within the context of breast cancer.
Methods: We conducted a study involving 9 people living with breast cancer (10 tumours in total, mean age, 54 ± 10 years).
White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively.
View Article and Find Full Text PDFObject: Exploring mouse brains by rapid 3D-Diffusion Tensor Imaging (3D-DTI) of high spatial resolution (HSR) is challenging in vivo. Here we use the super resolution reconstruction (SRR) postprocessing method to demonstrate its performance on Microtubule-Associated-Protein6 Knock-Out (MAP6-KO) mice.
Materials And Methods: Two spin-echo DTI were acquired (9.
This work shows that the longitudinal relaxation differences observed at very low magnetic fields between invasion/migration and proliferation processes on glioma mouse models in vivo are related to differences in the transmembrane water exchange basically linked to the aquaporin expression changes. Three glioma mouse models were used: Glio6 and Glio96 as invasion/migration models and U87 as cell proliferation model. In vivo proton longitudinal relaxation-rate constants (R1) at very low fields were measured by fast field cycling NMR (FFC-NMR).
View Article and Find Full Text PDFOur objective was to study NMR relaxometry of glioma invasion/migration at very low field (<2 mT) by fast-field-cycling NMR (FFC-NMR) and to decipher the pathophysiological processes of glioma that are responsible for relaxation changes in order to open a new diagnostic method that can be extended to imaging. The phenotypes of two new glioma mouse models, Glio6 and Glio96, were characterized by T -MRI, HE histology, Ki-67 immunohistochemistry (IHC) and CXCR4 RT-qPCR, and were compared with the U87 model. R dispersions of glioma tissues were acquired at low field (0.
View Article and Find Full Text PDF