Publications by authors named "H L de Almeida"

Although proteins in snake venoms have been extensively studied and characterized, low-mass molecules remain relatively unexplored, mainly due to their low abundance, secondary role in envenomation, and some analytical technique limitations. However, these small molecules can provide new important data related to venom toxins' molecular structure, functions, and evolutionary relationships. This research aimed to characterize molecules below 10 kDa in the venoms of snakes from the Viperidae families (Bothrops, Agkistrodon, and Bitis) and compare two chromatographic approaches: reverse-phase chromatography (RP), a classic technique, and hydrophilic interaction liquid chromatography (HILIC), an alternative technique, both coupled with high-resolution mass spectrometry (HRMS).

View Article and Find Full Text PDF

Research Question: Does metformin reverse endometriosis-associated infertility?

Design: Endometriosis was induced by transplanting uterus fragments from B6CBAF1 mice into recipients of the same strain. The mice were divided into groups: endometriosis (End, n = 24), sham-operated (Sham, n = 12), endometriosis with metformin (0.5mg/ml) orally administered for 3 months (EndMet, n = 21) and sham-operated metformin-treated (ShamMet, n = 16).

View Article and Find Full Text PDF

Background: Red Blood Cell Exchange (RBCX) is a common treatment for pediatric sickle cell disease (SCD). Since inflammation with elevated proinflammatory cytokines plays a crucial role in SCD, this study hypothesized that RBCX might lower these cytokines and aimed to assess the impact of this technique on these markers.

Methods: Prospective and observational study of pediatric SCD patients (HbSS genotype) enrolled in a chronic RBCX program at a Portuguese Hospital from October 2022 to August 2024.

View Article and Find Full Text PDF

The pivotal roles played by nitric oxide (NO) in tissue repair, inflammation, and immune response have spurred the development of a wide range of NO-releasing biomaterials. More recently, 3D printing techniques have significantly broadened the potential applications of polymeric biomaterials in biomedicine. In this context, the development of NO-releasing biomaterials that can be fabricated through 3D printing techniques has emerged as a promising strategy for harnessing the benefits of localized NO release from implantable devices, tissue regeneration scaffolds, or bandages for topical applications.

View Article and Find Full Text PDF

As life expectancy rises and modern lifestyles improve, there is an increasing focus on health, disease prevention, and enhancing physical appearance. Consumers are more aware of the benefits of natural ingredients in healthcare products while also being mindful of sustainability challenges. Consequently, marine bioactive compounds have gained popularity as ingredients in cosmetics and food supplements due to their diverse beneficial properties.

View Article and Find Full Text PDF