Tropical river deltas, and the social-ecological systems they sustain, are changing rapidly due to anthropogenic activity and climatic change. Baseline data to inform sustainable management options for resilient deltas is urgently needed and palaeolimnology (reconstructing past conditions from lake or wetland deposits) can provide crucial long-term perspectives needed to identify drivers and rates of change. We review how palaeolimnology can be a valuable tool for resource managers using three current issues facing tropical delta regions: hydrology and sediment supply, salinisation and nutrient pollution.
View Article and Find Full Text PDFIn situ monitoring is fundamental to manage eutrophication in rivers and streams. However, in recent decades, the frequency and spatial coverage of regulatory monitoring have often been reduced due to funding and infrastructure limitations. This reduction has made it impossible to provide adequate coverage for most water bodies.
View Article and Find Full Text PDFThe heterogeneous nature of lotic habitats plays an important role in the complex ecological and evolutionary processes that structure the microbial communities within them. Due to such complexity, our understanding of lotic microbial ecology still lacks conceptual frameworks for the ecological processes that shape these communities. We explored how bacterial community composition and underlying ecological assembly processes differ between lotic habitats by examining community composition and inferring community assembly processes across four major habitat types (free-living, particle-associated, biofilm on benthic stones and rocks, and sediment).
View Article and Find Full Text PDFRecent river studies have observed rapid phytoplankton dynamics, driven by diurnal cycling and short-term responses to storm events, highlighting the need to adopt new high-frequency characterisation methods to understand these complex ecological systems. This study utilised two such analytical methods; pigment analysis by high performance liquid chromatography (HPLC) and cell counting by flow cytometry (FCM), alongside traditional chlorophyll spectrophotometry and light microscopy screening, to characterise the major phytoplankton bloom of 2015 in the River Thames, UK. All analytical techniques observed a rapid increase in chlorophyll a concentration and cell abundances from March to early June, caused primarily by a diatom bloom.
View Article and Find Full Text PDF