Publications by authors named "H L Cawley"

Article Synopsis
  • Pancreatic ductal adenocarcinoma (PDAC) has different molecular subtypes, including a more aggressive basal-like/squamous subtype and a less aggressive classical/progenitor subtype.
  • A study identified that the adrenoceptor alpha 2A (ADRA2A) gene is downregulated in the aggressive subtype and its lower expression correlates with worse patient outcomes, including more metastasis and decreased survival.
  • Experimental results showed that increasing ADRA2A levels can reduce characteristics of the aggressive subtype while enhancing those of the less aggressive subtype, suggesting it could be a valuable target for diagnosis and treatment in PDAC.
View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) manifests diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, with the latter known for its aggressiveness. We employed integrative transcriptome and metabolome analyses to identify potential genes contributing to the molecular subtype differentiation and its metabolic features. Transcriptome analysis in PDAC patient cohorts revealed downregulation of adrenoceptor alpha 2A (ADRA2A) in the basal-like/squamous subtype, suggesting its potential role as a candidate suppressor of this subtype.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a heterogeneous disease with distinct molecular subtypes described as classical/progenitor and basal-like/squamous PDAC. We hypothesized that integrative transcriptome and metabolome approaches can identify candidate genes whose inactivation contributes to the development of the aggressive basal-like/squamous subtype. Using our integrated approach, we identified endosome-lysosome associated apoptosis and autophagy regulator 1 (ELAPOR1/KIAA1324) as a candidate tumor suppressor in both our NCI-UMD-German cohort and additional validation cohorts.

View Article and Find Full Text PDF

Inflammation and aberrant cellular metabolism are widely recognized as hallmarks of cancer. In pancreatic ductal adenocarcinoma (PDAC), inflammatory signaling and metabolic reprogramming are tightly interwoven, playing pivotal roles in the pathogenesis and progression of the disease. However, the regulatory functions of inflammatory mediators in metabolic reprogramming in pancreatic cancer have not been fully explored.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) encompasses diverse molecular subtypes, including the classical/progenitor and basal-like/squamous subtypes, each exhibiting distinct characteristics, with the latter known for its aggressiveness. We employed an integrative approach combining transcriptome and metabolome analyses to pinpoint potential genes contributing to the basal-like/squamous subtype differentiation. Applying this approach to our NCI-UMD-German and a validation cohort, we identified LIM Domain Only 3 (LMO3), a transcription co-factor, as a candidate suppressor of the basal-like/squamous subtype.

View Article and Find Full Text PDF