Publications by authors named "H Kumigashira"

Solid-phase rare earth monoxides have been recently synthesized thin film epitaxy. However, it has been difficult to synthesize heavy rare earth monoxides owing to their severe chemical instability. In this study, rocksalt-type heavy rare earth monoxides REOs (RE = Tb, Dy, Er) were synthesized for the first time, as single-phase epitaxial thin films.

View Article and Find Full Text PDF

Introducing the concept of topology has revolutionized materials classification, leading to the discovery of topological insulators and Dirac-Weyl semimetals. One of the most fundamental theories underpinning topological materials is the Su-Schrieffer-Heeger (SSH) model, which was developed in 1979-decades before the recognition of topological insulators-to describe conducting polymers. Distinct from the vast majority of known topological insulators with two and three dimensions, the SSH model predicts a one-dimensional analogue of topological insulators, which hosts topological bound states at the endpoints of a chain.

View Article and Find Full Text PDF

Topological insulators (TI) hold significant potential for various electronic and optoelectronic devices that rely on the Dirac surface state (DSS), including spintronic and thermoelectric devices, as well as terahertz detectors. The behavior of electrons within the DSS plays a pivotal role in the performance of such devices. It is expected that DSS appear on a surface of three dimensional(3D) TI by mechanical exfoliation.

View Article and Find Full Text PDF

High energy-conversion efficiency (ZT) of thermoelectric materials has been achieved in heavy metal chalcogenides, but the use of toxic Pb or Te is an obstacle for wide applications of thermoelectricity. Here, high ZT is demonstrated in toxic-element free Ba BO (B = Si and Ge) with inverse-perovskite structure. The negatively charged B ion contributes to hole transport with long carrier life time, and their highly dispersive bands with multiple valley degeneracy realize both high p-type electronic conductivity and high Seebeck coefficient, resulting in high power factor (PF).

View Article and Find Full Text PDF

The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality.

View Article and Find Full Text PDF