Na,K-ATPase is the active ion transport system that maintains the electrochemical gradients for Na and K across the plasma membrane of most animal cells. Na,K-ATPase is constituted by the association of two major subunits, a catalytic α and a glycosylated β subunit, both of which exist as different isoforms (in mammals known as α1, α2, α3, α4, β1, β2 and β3). Na,K-ATPase α and β isoforms assemble in different combinations to produce various isozymes with tissue specific expression and distinct biochemical properties.
View Article and Find Full Text PDFPurpose: The aim of this study was to determine the utility of prophylactic antibiotics before pyloromyotomy for the prevention of Surgical Site Infections (SSI) among children with Infantile Hypertrophic Pyloric Stenosis (IHPS).
Methods: A systematic search of PubMed, Scopus, Embase, and Web of Science databases was performed to identify papers published till 30th July 2024. The main outcome of interest was the incidence of SSIs.
Annexins (ANXAs), calcium-sensitive phospholipid-binding proteins, are pivotal for cellular membrane repair, which is crucial for eukaryotic cell survival under membrane stress. With their unique trimeric arrangements and crystalline arrays on the membrane surface, ANXA4 and ANXA5 induce membrane curvature and rapidly orchestrate plasma membrane resealing. However, the influence of cholesterol and anionic lipid headgroups on annexin-induced membrane curvature remains poorly understood at the molecular level.
View Article and Find Full Text PDFPhospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca sensitivity of active SERCA, increasing the Ca concentration required for pump cycling. However, PLB does not decrease Ca binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca affinity.
View Article and Find Full Text PDF