The application of in vitro biological assays as new approach methodologies (NAMs) to support grouping of UVCB (unknown or variable composition, complex reaction products, and biological materials) substances has recently been demonstrated. In addition to cell-based phenotyping as NAMs, in vitro transcriptomic profiling is used to gain deeper mechanistic understanding of biological responses to chemicals and to support grouping and read-across. However, the value of gene expression profiling for characterizing complex substances like UVCBs has not been explored.
View Article and Find Full Text PDFAre dose-response relationships for benzene and health effects such as myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) supra-linear, with disproportionately high risks at low concentrations, e.g. below 1 ppm? To investigate this hypothesis, we apply recent mode of action (MoA) and mechanistic information and modern data science techniques to quantify air benzene-urinary metabolite relationships in a previously studied data set for Tianjin, China factory workers.
View Article and Find Full Text PDFThe prenatal developmental toxicity of the fumes of oxidised asphalt (OA) was tested by nose-only inhalation in the rat. The test material was generated by collecting fumes from the headspace of storage tanks filled with OA. The composition of these fumes was matched to fumes sampled at a workplace where the same OA was applied in a pour-and-roll operation, representing occupational exposure with high concentrations of fumes to not underestimate the possible hazard.
View Article and Find Full Text PDFThe prenatal developmental toxicity of bitumen fume was tested by nose-only inhalation in the rat. The fumes for exposure were collected from the headspace of a storage tank filled with a bitumen corresponding in composition to an anticipated worst-case occupational exposure. The composition of these fumes was compared to actual paving site fumes to ensure its representativeness for workplace exposures.
View Article and Find Full Text PDFOne of the most challenging areas in regulatory science is assessment of the substances known as UVCB (unknown or variable composition, complex reaction products and biological materials). Because the inherent complexity and variability of UVCBs present considerable challenges for establishing sufficient substance similarity based on chemical characteristics or other data, we hypothesized that new approach methodologies (NAMs), including in vitro test-derived biological activity signatures to characterize substance similarity, could be used to support grouping of UVCBs. We tested 141 petroleum substances as representative UVCBs in a compendium of 15 human cell types representing a variety of tissues.
View Article and Find Full Text PDF