Publications by authors named "H Kerkkamp"

Scorpion venoms are mixtures of proteins, peptides and small molecular compounds with high specificity for ion channels and are therefore considered to be promising candidates in the venoms-to-drugs pipeline. Transcriptomes are important tools for studying the composition and expression of scorpion venom. Unfortunately, studying the venom gland transcriptome traditionally requires sacrificing the animal and therefore is always a single snapshot in time.

View Article and Find Full Text PDF

Molecular genetic data have recently been incorporated in attempts to reconstruct the ecology of the ancestral snake, though this has been limited by a paucity of data for one of the two main extant snake taxa, the highly fossorial Scolecophidia. Here we present and analyze vision genes from the first eye-transcriptomic and genome-wide data for Scolecophidia, for Anilios bicolor, and A. bituberculatus, respectively.

View Article and Find Full Text PDF

More than 400,000 people each year suffer adverse effects following bites from venomous snakes. However, snake venom is also a rich source of bioactive molecules with known or potential therapeutic applications. Manually 'milking' snakes is the most common method to obtain venom.

View Article and Find Full Text PDF

Venomous snakes are important subjects of study in evolution, ecology, and biomedicine. Many venomous snakes have alpha-neurotoxins (α-neurotoxins) in their venom. These toxins bind the alpha-1 nicotinic acetylcholine receptor (nAChR) at the neuromuscular junction, causing paralysis and asphyxia.

View Article and Find Full Text PDF

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species.

View Article and Find Full Text PDF