Background And Objective: The study examines the relationship between ocular rotations and cardiovascular functions through detailed biomechanical analysis. The study documents specific patterns of ocular movements and their synchronization with cardiovascular activity, highlighting significant correlations. These findings provide a basis for understanding the opto-biomechanical interplay between ocular and cardiovascular dynamics.
View Article and Find Full Text PDFBacteriophages present unique features that enable targeted killing of bacteria, including strains resistant to many antibiotics. However, phage pharmacokinetics and pharmacodynamics constitute much more complex and challenging aspects for researchers than those attributable to antibiotics. This is because phages are not just chemical substances, but also biological nanostructures built of different proteins and genetic material that replicate within their bacterial hosts and may induce immune responses acting as simple antigens.
View Article and Find Full Text PDFBackground: The process of rapid propagation of the corneal deformation in air puff tonometer depends not only on intraocular pressure, but also on the biomechanical properties of the cornea and anterior eye. One of the biomechanical properties of the cornea is viscoelasticity, which is the most visible in its high-speed deformations. It seems reasonable to link the corneal viscoelasticity parameter to two moments of the highest speed of corneal deformations, when the cornea buckles.
View Article and Find Full Text PDFBackground: Glaucoma, a degenerative and progressive disease, leads to structural and functional changes in the optic nerve head and retinal ganglion cells (RGCs), while the vasculature of the iris stays intact.
Objectives: The aim of this study was to determine whether the coherence level associated with pupil geometry and peripheral arterial pulsation can be the basis for differentiating glaucoma and glaucoma-suspected patients from a control group.
Material And Methods: This is an investigator-initiated, single-center prospective cohort study.
Int J Environ Res Public Health
July 2019
The paper presents, for the first time, corneal buckling, during the air puff applanation, recorded with use of Ocular Response Analyzer (ORA), when the cornea is deeper deformed after its applanation. Precise numerical analysis of the air pressure curve from the raw data, distinct local disturbances of the curve, which appear almost exactly at the time of the first and the second applanations. Thirty measurements taken on six eyes show clear dependencies between times of both applanations and appearances of local wave disturbances on the air pressure curve as well as between the amplitude of pressure wave disturbances and the respective height of applanation curve.
View Article and Find Full Text PDF