Publications by authors named "H Kadokura"

Localization to the endoplasmic reticulum (ER) and subsequent disulfide bond formation are crucial processes governing the biogenesis of secretory pathway proteins in eukaryotes. Hence, comprehending the mechanisms underlying these processes is important. Here, we have engineered firefly luciferase (FLuc) as a tool to detect deficiencies in these processes within mammalian cells.

View Article and Find Full Text PDF

Background/aim: Bone marrow cells contain nonhematopoietic cells with the ability to differentiate into osteogenic, chondrogenic, and adipogenic lineages. Mechanical stress influences osteoblast differentiation of bone marrow cells into osteogenic, chondrogenic, and adipogenic lineages, measurable as the abundance of alkaline phosphatase-positive (ALP) colony-forming unit-fibroblasts (CFU-F); however, the effect of diode laser irradiation on osteoblast differentiation is unknown. The aim of this study was to analyze the effects of photobiomodulation on the osteogenic differentiation of mesenchymal stem cells in the bone marrow, using the CFU-F assay.

View Article and Find Full Text PDF

Background/aim: Recent reports indicate that sclerostin is secreted by periodontal ligament tissue-derived (PDL) cells during orthodontic force loading and that the secreted sclerostin contributes to bone metabolism. However, the detailed mechanism is poorly understood. The aim of this study was to determine how PDL cells affect bone formation.

View Article and Find Full Text PDF

Background/aim: COVID-19 pandemic caused the rapid dissemination of ultraviolet C (UVC) sterilization apparatuses. Prolonged exposure to UVC, however, may exert harmful effects on the human body. The aim of the present study was to comprehensively investigate the anti-UVC activity of a total of 108 hot-water soluble herb extracts, using human dermal fibroblast and melanoma cell lines, for the future development of skin care products.

View Article and Find Full Text PDF

Sarco/endoplasmic reticulum Ca -ATPase (SERCA) 2b is a ubiquitous SERCA family member that conducts Ca uptake from the cytosol to the ER. Herein, we present a 3.3 Å resolution cryo-electron microscopy (cryo-EM) structure of human SERCA2b in the E1·2Ca state, revealing a new conformation for Ca -bound SERCA2b with a much closer arrangement of cytosolic domains than in the previously reported crystal structure of Ca -bound SERCA1a.

View Article and Find Full Text PDF