Transcriptomic data is often expensive and difficult to generate in large cohorts relative to genomic data; therefore, it is often important to integrate multiple transcriptomic datasets from both microarray- and next generation sequencing (NGS)-based transcriptomic data across similar experiments or clinical trials to improve analytical power and discovery of novel transcripts and genes. However, transcriptomic data integration presents a few challenges including reannotation and batch effect removal. We developed the Gene Expression Data Integration (GEDI) R package to enable transcriptomic data integration by combining existing R packages.
View Article and Find Full Text PDFIn cattle, the in vitro production (IVP) of embryos is becoming more relevant than embryos produced in vivo, i.e. after multiple ovulation and embryo transfer (MOET).
View Article and Find Full Text PDFCattle production is one of the key contributors to global warming due to methane emission, which is a by-product of converting feed stuff into milk and meat for human consumption. Rumen hosts numerous microbial communities that are involved in the digestive process, leading to notable amounts of methane emission. The key factors underlying differences in methane emission between individual animals are due to, among other factors, both specific enrichments of certain microbial communities and host genetic factors that influence the microbial abundances.
View Article and Find Full Text PDF