Publications by authors named "H K Proudfit"

Stimulation of neurons in the cuneiform nucleus (CnF) produces antinociception and cardiovascular responses that could be mediated, in part, by noradrenergic neurons that innervate the spinal cord dorsal horn. The present study determined the projections of neurons in the CnF to the pontine noradrenergic neurons in the A5, A6 (locus coeruleus), and A7 cell groups that are known to project to the spinal cord. Injections of the anterograde tracer, biotinylated dextran amine in the CnF of Sasco Sprague-Dawley rats labeled axons located near noradrenergic neurons that were visualized by processing tissue sections for tyrosine hydroxylase-immunoreactivity.

View Article and Find Full Text PDF

Stimulation of neurons in the ventrolateral periaqueductal gray (PAG) produces antinociception as well as cardiovascular depressor responses that are mediated in part by pontine noradrenergic neurons. A previous report using light microscopy has described a pathway from neurons in the ventrolateral PAG to noradrenergic neurons in the A5 cell group that may mediate these effects. The present study used anterograde tracing and electron microscopic analysis to provide more definitive evidence that neurons in the ventrolateral PAG form synapses with noradrenergic and non-catecholaminergic A5 neurons in Sasco Sprague-Dawley rats.

View Article and Find Full Text PDF

This study investigated the ability of substance P (Sub P) to induce dendritic varicosities (DVs) or beads in neurons of the rostral ventromedial medulla (RVM) of the rat. Microinjection of 5-200 pmol Sub P in the RVM produced a concentration-dependent increase in the number of DVs in distal dendrites of RVM neurons that were immunoreactive for the neurokinin-1 receptor, but not serotonin. The effect was reversible, as DVs were essentially absent 2 and 4h after microinjection.

View Article and Find Full Text PDF

Microinjection of neurotensin (NT) into the rostral ventromedial medulla (RVM) produces dose-dependent antinociception. Here we show that antinociception produced by intra-RVM microinjection of neurotensin (NT) or the selective NT receptor subtype 1 (NTR1) agonist PD149163 can be partially blocked by intrathecal (i.t.

View Article and Find Full Text PDF

Microinjection of neurotensin (NT) in the rostral ventromedial medulla (RVM) produces dose-dependent antinociception. The NTR1 (Neurotensin Receptor Subtype 1) may mediate part of this response, however definitive evidence is lacking, and the spinal mediators of NTR1-induced antinociception are unknown. In the present study, we used immunohistochemical techniques to show that the NTR1, but not the NTR2 is expressed by spinally projecting serotonergic neurons of the RVM.

View Article and Find Full Text PDF