Objectives: Adult upper limb asymmetry is used to reconstruct behavior. However, the developmental trajectory of asymmetry in bone length, cross-sectional geometry (CSG), and joint dimensions is poorly understood. This study examines the development trajectory of humeral asymmetry and if asymmetry in bone length, joint size, and CSG develop in concert.
View Article and Find Full Text PDFRecent research on the pelvis has clarified the flexibility of pelvic bones to manage nearly infinite possibilities in terms of selection and drift, while still maintaining excellent bipedalism. Despite this work, and the studies outlining the diversity of pelvic morphology across the hominin lineage, conversations continue to be stymied by distractions related to purported trade-offs that the different functions the pelvis must either allow for (e.g.
View Article and Find Full Text PDFClassification is a fundamental task in biology used to assign members to a class. While linear discriminant functions have long been effective, advances in phenotypic data collection are yielding increasingly high-dimensional datasets with more classes, unequal class covariances, and non-linear distributions. Numerous studies have deployed machine learning techniques to classify such distributions, but they are often restricted to a particular organism, a limited set of algorithms, and/or a specific classification task.
View Article and Find Full Text PDFObjectives: In studies of growth in the past, low percentage of cortical area (%CA) is commonly attributed to poor general health, due to factors including poor nutrition, low socioeconomic status, or other physiological stressors. What constitutes low relative cortical dimensions has not been established across a diverse range of human skeletal samples. This study examines %CA in a large immature skeletal sample to establish typical variation in humans with consideration of both body mass and subsistence strategy.
View Article and Find Full Text PDFEvolutionary responses to selection for bipedalism and childbirth have shaped the human pelvis, a structure that differs substantially from that in apes. Morphology related to these factors is present by birth, yet the developmental-genetic mechanisms governing pelvic shape remain largely unknown. Here, we pinpoint and characterize a key gestational window when human-specific pelvic morphology becomes recognizable, as the ilium and the entire pelvis acquire traits essential for human walking and birth.
View Article and Find Full Text PDF