Publications by authors named "H K Kole"

Many infections, including malaria, are associated with an increase in autoantibodies (AAbs). Prior studies have reported an association between genetic markers of susceptibility to autoimmune disease and resistance to malaria, but the underlying mechanisms are unclear. Here, we performed a longitudinal study of children and adults (n = 602) in Mali and found that high levels of plasma AAbs before the malaria season independently predicted a reduced risk of clinical malaria in children during the ensuing malaria season.

View Article and Find Full Text PDF
Article Synopsis
  • Renal injury is a common complication in autoimmune diseases like systemic lupus erythematosus (SLE), with around 20% of SLE patients developing lupus nephritis, which can lead to severe kidney failure.
  • Research using animal models indicates that immune cell infiltration in the kidneys is associated with worsening kidney damage, suggesting that preventing this infiltration could help stop disease progression.
  • The chapter outlines a detailed methodology for isolating and analyzing immune cells from kidney samples, specifically focusing on T cells and macrophages in a SLE mouse model, improving cell viability and consistency in experimental results.
View Article and Find Full Text PDF

Activated B cells experience metabolic changes that require mitochondrial remodeling, in a process incompletely defined. In this study, we report that mitochondrial antiviral signaling protein (MAVS) is involved in BCR-initiated cellular proliferation and prolonged survival. MAVS is well known as a mitochondrial-tethered signaling adaptor with a central role in viral RNA-sensing pathways that induce type I IFN.

View Article and Find Full Text PDF

The host response against infection with commonly raises self-reactivity as a side effect, and antibody deposition in kidney has been cited as a possible cause of kidney injury during severe malaria. In contrast, animal models show that infection with the parasite confers long-term protection from lethal lupus nephritis initiated by autoantibody deposition in kidney. We have limited knowledge of the factors that make parasite infection more likely to induce kidney damage in humans, or the mechanisms underlying protection from autoimmune nephritis in animal models.

View Article and Find Full Text PDF

Lupus nephritis is a severe organ manifestation in systemic lupus erythematosus leading to kidney failure in a subset of patients. In lupus-prone mice, controlled infection with Plasmodium parasites protects against the progression of autoimmune pathology including lethal glomerulonephritis. Here, we demonstrate that parasite-induced protection was not due to a systemic effect of infection on autoimmunity as previously assumed, but rather to specific alterations in immune cell infiltrates into kidneys and renal draining lymph nodes.

View Article and Find Full Text PDF