Publications by authors named "H K Byrne"

Clear cell kidney cancers are characterized both by conserved oncogenic driver events and by marked intratumor genetic and phenotypic heterogeneity, which help drive tumor progression, metastasis, and resistance to therapy. How these are reflected in transcriptional programs within the cancer and stromal cell components remains an important question with the potential to drive novel therapeutic approaches to treating cancer. To better understand these programs, we perform single-cell transcriptomics on 75 multi-regional biopsies from kidney tumors and normal kidney.

View Article and Find Full Text PDF

Tire and road wear particles (TRWP) are generated at the frictional interface between tires and the road surface. This mixture of tire tread and road pavement materials can migrate from roads into nearby water bodies during precipitation events. The absence of mass-based measurements in marine environments introduces uncertainty in environmental risk assessments and fate and transport models.

View Article and Find Full Text PDF

Many cellular processes and organismal behaviours are time-dependent, and asynchrony of these phenomena can facilitate speciation through reinforcement mechanisms. The Mojave and Sonoran desert tortoises (Gopherus agassizii and G. morafkai respectively) reside in adjoining deserts with distinct seasonal rainfall patterns and they exhibit asynchronous winter brumation and reproductive behaviours.

View Article and Find Full Text PDF

Background: Radiation-induced pneumonitis affects up to 33% of non-small cell lung cancer (NSCLC) patients, with fatal pneumonitis occurring in 2% of patients. Pneumonitis risk is related to the dose and volume of lung irradiated. Clinical radiotherapy plans assume lungs are functionally homogeneous, but evidence suggests that avoidance of high-functioning lung during radiotherapy can reduce the risk of radiation-induced pneumonitis.

View Article and Find Full Text PDF

In vivo observations show that oxygen levels in tumours can fluctuate on fast and slow timescales. As a result, cancer cells can be periodically exposed to pathologically low oxygen levels; a phenomenon known as cyclic hypoxia. Yet, little is known about the response and adaptation of cancer cells to cyclic, rather than, constant hypoxia.

View Article and Find Full Text PDF