Blood lipids and metabolites are markers of current health and future disease risk. Here, we describe plasma nuclear magnetic resonance (NMR) biomarker data for 118,461 participants in the UK Biobank. The biomarkers cover 249 measures of lipoprotein lipids, fatty acids, and small molecules such as amino acids, ketones, and glycolysis metabolites.
View Article and Find Full Text PDFPleiotropy and genetic correlation are widespread features in genome-wide association studies (GWAS), but they are often difficult to interpret at the molecular level. Here, we perform GWAS of 16 metabolites clustered at the intersection of amino acid catabolism, glycolysis, and ketone body metabolism in a subset of UK Biobank. We utilize the well-documented biochemistry jointly impacting these metabolites to analyze pleiotropic effects in the context of their pathways.
View Article and Find Full Text PDFBackground: The direct effects of general adiposity (body mass index (BMI)) and central adiposity (waist-to-hip-ratio (WHR)) on circulating lipoproteins, lipids, and metabolites are unknown.
Methods: We used new metabolic data from UK Biobank (=109,532, a five-fold higher N over previous studies). EDTA-plasma was used to quantify 249 traits with nuclear-magnetic-resonance spectroscopy including subclass-specific lipoprotein concentrations and lipid content, plus pre-glycemic and inflammatory metabolites.
Biomarkers of low-grade inflammation have been associated with susceptibility to a severe infectious disease course, even when measured prior to disease onset. We investigated whether metabolic biomarkers measured by nuclear magnetic resonance (NMR) spectroscopy could be associated with susceptibility to severe pneumonia (2507 hospitalised or fatal cases) and severe COVID-19 (652 hospitalised cases) in 105,146 generally healthy individuals from UK Biobank, with blood samples collected 2007-2010. The overall signature of metabolic biomarker associations was similar for the risk of severe pneumonia and severe COVID-19.
View Article and Find Full Text PDFWe present comboFM, a machine learning framework for predicting the responses of drug combinations in pre-clinical studies, such as those based on cell lines or patient-derived cells. comboFM models the cell context-specific drug interactions through higher-order tensors, and efficiently learns latent factors of the tensor using powerful factorization machines. The approach enables comboFM to leverage information from previous experiments performed on similar drugs and cells when predicting responses of new combinations in so far untested cells; thereby, it achieves highly accurate predictions despite sparsely populated data tensors.
View Article and Find Full Text PDF