Publications by authors named "H Janeczek"

This study presents an in-depth molecular and structural characterization of novel biopolyesters developed under the trademark Bluepha. The primary aim was to elucidate the relationship between chemical structure, chain architecture, and material properties of these biopolyesters to define their potential applications across various sectors. Proton nuclear magnetic resonance (H NMR) analysis identified the biopolyesters as poly[()-3-hydroxybutyrate--()-3-hydroxyhexanoate] (PHBH) copolymers, containing 4% and 10% molar content of hydroxyhexanoate (HH) units, respectively.

View Article and Find Full Text PDF

This study investigates a supramolecular approach to elucidate the interaction between an organic semiconducting molecule, specifically butyric acid-functionalized perylene diimide, and a block copolymer comprising poly-3-hexyl thiophene-b-polyethylene glycol. This interaction results in the formation of a precisely structured nanoarchitecture within the supramolecular block copolymer, driven by the ionic interplay between the block copolymer and small organic molecules. The optical properties of the synthesized supramolecular block copolymer were characterized by using ellipsometry.

View Article and Find Full Text PDF

Interesting alternatives to expensive biodegradable polymers are their composites with natural fillers. The addition of biochar to a blend of poly(lactic acid) (PLA) and poly(3-hydroxybutyrate--4-hydroxybutyrate) was studied, and the resulting materials were evaluated for their properties and changes during degradation. Introducing biochar as a filler brought a noticeable improvement in electrostatic properties.

View Article and Find Full Text PDF

Composites based on powdered single-component epoxy matrix are an alternative technological solution for composites produced using liquid epoxy resins. This article describes in detail the process of producing graphite-reinforced composites for tribological applications. The advantages and disadvantages of technological processes where the matrix is a single-component epoxy powder were demonstrated, and the properties of the obtained materials were examined.

View Article and Find Full Text PDF

Understanding the properties of polymers, such as their crystallinity, is crucial for their material performance and predicting their behavior during and after use, especially in the case of environmentally friendly (bio)degradable polymers, enabling optimized design. In this work, for the first time, a pressure-induced condis crystal-like mesophase of poly(butylene succinate--butylene adipate) (PBSA) is presented. The phase behavior of pressed films obtained from commercial PBSA with 25% butylene adipate units is investigated at various processing temperatures from room temperature to 100 °C, pressed at a pressure of the press jaws and at 2-5 t for 1-5 min.

View Article and Find Full Text PDF