Publications by authors named "H Jamgotchian"

In this paper, using the same geometrical approach as for the (2  √  3  ×  2  √  3)R30° structure (Jamgotchian et al 2015 J. Phys.: Condens.

View Article and Find Full Text PDF

The deposition of one silicon monolayer on Ag(1 1 1) gives rise to a set of superstructures depending on growth conditions. These superstructures are correlated to the epitaxy between the honeycomb structure of silicon (so called silicene) and the silver substrate. In this paper, from a detailed re-analysis of experimental results, obtained by scanning tunneling microscopy and by low energy electron diffraction on the (2√3  ×  2√3)R30° structure, we propose a new atomic model of the silicene layer based on periodic arrangements of perfect areas of (2√3  ×  2√3)R30° surrounded by defect areas.

View Article and Find Full Text PDF

We demonstrate the kinetically controlled growth of one-dimensional Co nanomagnets with a high lateral order on a nanopatterned Ag(110) surface. First, self-organized Si nanoribbons are formed upon submonolayer condensation of Si on the anisotropic Ag(110) surface. Depending on the growth temperature, individual or regular arrays (with a pitch of 2 nm) of Si nanoribbons can be grown.

View Article and Find Full Text PDF

In this paper, we report the direct chemical synthesis of silicon sheets in gram-scale quantities by chemical exfoliation of pre-processed calcium disilicide (CaSi2). We have used a combination of x-ray photoelectron spectroscopy, transmission electron microscopy and energy-dispersive x-ray spectroscopy to characterize the obtained silicon sheets. We found that the clean and crystalline silicon sheets show a two-dimensional hexagonal graphitic structure.

View Article and Find Full Text PDF

The deposition of one silicon monolayer on the silver (111) substrate in the temperature range 150-300 °C gives rise to a mix of (4 × 4), (2√3 × 2√3)R30° and (√13 × √13)R13.9° superstructures which strongly depend on the substrate temperature. We deduced from a detailed analysis of the LEED patterns and the STM images that all these superstructures are given by a quasi-identical silicon single layer with a honeycomb structure (i.

View Article and Find Full Text PDF