Leishmaniasis and trypanosomiasis rank among lethal vector-borne parasitic diseases that are endemic in tropical and sub-tropical countries. There are currently no preventive vaccines against them, and once diagnosed, a handful of less effective drugs clinically accessible are the only therapeutic options offered to treat these ailments. And although curable, the eradication and elimination of these diseases are hampered by the emergence of multidrug-resistant strains of the causal pathogens.
View Article and Find Full Text PDFLeishmaniasis is a neglected tropical disease that is caused by the Leishmania parasite. It is estimated that there are more than 350 million people at risk of infection annually. Current treatments that are in clinical use are expensive, have toxic side effects, and are facing parasitic resistance.
View Article and Find Full Text PDFIn a pilot study, eleven pyrrolopyridine and pyrrolopyrimidine derivatives (specifically, 7-azaindole and 7-deazapurine derivatives) were synthesised by Suzuki cross-coupling reactions and evaluated via radioligand binding assays as potential adenosine receptor (AR) antagonists in order to further investigate the structure-activity relationships of these compounds. 6-Chloro-4-phenyl-1H-pyrrolo[2,3-b]pyridine, with a 7-azaindole scaffold, was identified as a selective A AR antagonist with a rAK value of 0.16 µM, and interestingly, the addition of a N-atom to the aforementioned fused heterocyclic ring system, creating corresponding 7-deazapurines, led to a dual A/A AR ligand (2-chloro-4-phenyl-7H-pyrrolo[2,3-d]pyrimidine: rAK: 0.
View Article and Find Full Text PDF