Publications by authors named "H J Tytgat"

Cow's milk protein allergy (CMPA) in infancy is associated with intestinal microbial dysbiosis, characterised by low Bifidobacteriaceae levels. The present study aimed to investigate the impact of two human milk oligosaccharides (HMO), lactose (L), and their combination on the faecal microbiome and metabolome of infants with CMPA. Stool samples of 12 term infants with probable CMPA (mean age 4.

View Article and Find Full Text PDF
Article Synopsis
  • The cell-envelope of Gram-negative bacteria contains lipopolysaccharides (LPS) that activate the innate immune system via Toll-Like Receptors (TLRs), particularly TLR4 and TLR2.
  • Akkermansia muciniphila, a beneficial intestinal bacterium, has a unique form of LPS called lipooligosaccharide (LOS) that lacks an O-polysaccharide repeating unit and presents unusual structural features.
  • The study shows that A. muciniphila LOS elicits a stronger anti-inflammatory response by activating TLR2 over TLR4, potentially explaining its positive effects on the host's health.
View Article and Find Full Text PDF

The intestinal anaerobic bacterium Akkermansia muciniphila is specialized in the degradation of mucins, which are heavily O-glycosylated proteins that constitute the major components of the mucus lining the intestine. Despite that adhesion to mucins is considered critical for the persistence of A. muciniphila in the human intestinal tract, our knowledge of how this intestinal symbiont recognizes and binds to mucins is still limited.

View Article and Find Full Text PDF

Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored.

View Article and Find Full Text PDF

Primary repair of acute subscapularis (SSC) tears provides excellent results, but tendon retraction, muscle atrophy, fatty infiltration, and humeral head migration may render a more chronic tear irreparable. These irreparable SSC tears present a diagnostic and treatment challenge for orthopaedic surgeons. Careful physical examination and imaging evaluation can help to distinguish those with reparable versus irreparable tears, but they are still not very reliable due to the methodological limitations of current evidence.

View Article and Find Full Text PDF