Background: Assessing the historical dynamics of key food web components is crucial to understand how climate change impacts the structure of Arctic marine ecosystems. Most retrospective stable isotopic studies to date assessed potential ecosystem shifts in the Arctic using vertebrate top predators and filter-feeding invertebrates as proxies. However, due to long life histories and specific ecologies, ecosystem shifts are not always detectable when using these taxa.
View Article and Find Full Text PDFThe deep pelagic ocean is increasingly subjected to human-induced environmental change. While pelagic animals provide important ecosystem functions including climate regulation, species-specific responses to stressors remain poorly documented. Here, we investigate the effects of simulated ocean warming and sediment plumes on the cosmopolitan deep-sea jellyfish Periphylla periphylla, combining insights gained from physiology, gene expression and changes in associated microbiota.
View Article and Find Full Text PDFDeep-sea cephalopods are diverse, abundant, and poorly understood. The Cirrata are gelatinous finned octopods and among the deepest-living cephalopods ever recorded. Their natural feeding behaviour remains undocumented.
View Article and Find Full Text PDF