Publications by authors named "H J Ryser"

Current HIV entry inhibitors target the binding of the viral envelope glycoprotein gp120 to cellular CD4 and co-receptors, or block a late stage of the fusogenic activation of adjacent gp41. New targets are suggested by the role of cell surface protein disulfide isomerase (PDI), which attaches to the primary receptor CD4 close to the gp120-binding site. This could enable PDI to reduce gp120 disulfide bonds, which triggers the major conformational changes in gp120 and gp41 required for virus entry.

View Article and Find Full Text PDF

We previously reported that monoclonal antibodies to protein-disulfide isomerase (PDI) and other membrane-impermeant PDI inhibitors prevented HIV-1 infection. PDI is present at the surface of HIV-1 target cells and reduces disulfide bonds in a model peptide attached to the cell membrane. Here we show that soluble PDI cleaves disulfide bonds in recombinant envelope glycoprotein gp120 and that gp120 bound to the surface receptor CD4 undergoes a disulfide reduction that is prevented by PDI inhibitors.

View Article and Find Full Text PDF

A chinese hamster ovary (CHO) fibroblast, transfected with murine MHC class II genes, inefficiently stimulated CD4+ Th cells specific for OVA, hen egg lysozyme (HEL), and pork insulin which contain disulfide bonds. However, the fibroblasts elicited a T cell response to lambda repressor, which lacks disulfide bonds, and efficiently presented synthetic peptides. A somatic cell hybrid WALC, generated by fusing the hamster fibroblast with a murine L cell fibroblast, very efficiently processed OVA and HEL, suggesting that impaired processing was genetically complemented and was a recessive trait.

View Article and Find Full Text PDF

The cell surface of mammalian cells is capable of reductively cleaving disulfide bonds of exogenous membrane-bound macromolecules (for instance, the interchain disulfide of diphtheria toxin), and inhibiting this process with membrane-impermeant sulfhydryl reagents prevents diphtheria toxin cytotoxicity. More recently it was found that the same membrane function can be inhibited by bacitracin, an inhibitor of protein disulfide-isomerase (PDI), and by monoclonal antibodies against PDI, suggesting that PDI catalyzes a thiol-disulfide interchange between its thiols and the disulfides of membrane-bound macromolecules. We provide evidence that the same reductive process plays a role in the penetration of membrane-bound human immunodeficiency virus (HIV) and show that HIV infection of human lymphoid cells is markedly inhibited by the membrane-impermeant sulfhydryl blocker 5,5'-dithiobis(2-nitrobenzoic acid), by bacitracin, and by anti-PDI antibodies.

View Article and Find Full Text PDF

Evidence had been provided that a disulfide-linked [125I]iodotyramine/poly(D-lysine) conjugate was reductively cleaved when bound nonspecifically to the surface of Chinese hamster ovary (CHO) cells and that this cleavage was abolished by membrane-impermeant sulfhydryl blockers. The same blockers were subsequently found to inhibit the cytotoxicity of diphtheria toxin, a disulfide-linked heterodimer that binds to a specific surface receptor and must undergo chain separation to exert its cytotoxicity. This suggested that the disulfides of both macromolecules might be cleaved by a thiol-disulfide interchange reaction, possibly mediated by protein disulfide-isomerase (PDI, EC 5.

View Article and Find Full Text PDF