Publications by authors named "H J Rozeboom"

Incorporating noble metals in artificial metalloenzymes (ArMs) is challenging due to the lack of suitable soft coordinating ligands among natural amino acids. We present a new class of ArMs featuring a genetically encoded noble-metal-binding site based on a non-canonical thiophenol-based amino acid, 4-mercaptophenylalanine (pSHF), incorporated in the transcriptional regulator LmrR through stop codon suppression. We demonstrate that pSHF is an excellent ligand for noble metals in their low oxidation states.

View Article and Find Full Text PDF

Peroxidases belong to a group of enzymes that are widely found in animals, plants and microorganisms. These enzymes are effective biocatalysts for a wide range of oxidations on various substrates. This work presents a biochemical and structural characterization of a novel heme-containing peroxidase from Cyanobacterium sp.

View Article and Find Full Text PDF

Pyranose oxidases are valuable biocatalysts, yet only a handful of bacterial pyranose oxidases are known. These bacterial enzymes exhibit noteworthy distinctions from their extensively characterized fungal counterparts, encompassing variations in substrate specificity and structural attributes. Herein a bacterial pyranose oxidase from Oscillatoria princeps (OPOx) was biochemically characterized in detail.

View Article and Find Full Text PDF

Previously, some bacteria were shown to harbour enzymes capable of catalysing the oxidative cleavage of the double bond of t-anethole and related compounds. The cofactor dependence of these enzymes remained enigmatic due to a lack of biochemical information. We report on catalytic and structural details of a representative of this group of oxidative enzymes: t-anethole oxygenase from Stenotrophomonas maltophilia (TAO).

View Article and Find Full Text PDF

Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized.

View Article and Find Full Text PDF