Publications by authors named "H J Pelzer"

Electrochemical CO reduction offers a promising method of converting renewable electrical energy into valuable hydrocarbon compounds vital to hard-to-abate sectors. Significant progress has been made on the lab scale, but scale-up demonstrations remain limited. Because of the low energy efficiency of CO reduction, we suspect that significant thermal gradients may develop in industrially relevant dimensions.

View Article and Find Full Text PDF

Administration of human protein-based drugs to animals often leads to formation of antidrug antibodies (ADAs) that may form circulating immune complexes (CICs) with the dosed protein. Circulating immune complexes can activate and bind complement (cCICs), and if large amount of CICs or cCICs is formed, the clearance mechanism potentially becomes saturated, which can lead to immune complex (IC) deposition and inflammation. To obtain a better understanding of the underlying factors, including the relationship between different dose regimes on IC formation and deposition and identification of possible biomarkers of IC deposition and IC-related pathological changes in kidneys, BALB/c and C57BL/6J mice were administered with human anti-tumor necrosis factor α (aTNFα, adalimumab) or a humanized anti-TNP (aTNP) antibody for 13 weeks.

View Article and Find Full Text PDF

Genetic absence of the urokinase-type plasminogen activator (uPA) reduces arthritis progression in the collagen-induced arthritis (CIA) mouse model to an extent just shy of disease abrogation, but this remarkable observation has not been translated into therapeutic intervention. Our aim was to test the potential in mice of an Ab that blocks the proteolytic capacity of uPA in the CIA model and the delayed-type hypersensitivity arthritis model. A second aim was to determine the cellular origins of uPA and the uPA receptor (uPAR) in joint tissue from patients with rheumatoid arthritis.

View Article and Find Full Text PDF

Background: Subunit A of coagulation factor XIII (FXIII-A) is important for clot stability and acts in the subsequent wound healing process. Loss of plasma FXIII-A has been reported after surgery, sepsis, and inflammatory conditions. In the intestinal mucosa, FXIII-A is expressed by macrophages and cellular FXIII-A has been associated with phagocytosis and migration of macrophages.

View Article and Find Full Text PDF

The thrombin-activated transglutaminase factor XIII (FXIII) that covalently crosslinks and stablizes provisional fibrin matrices is also thought to support endothelial and epithelial barrier function and to control inflammatory processes. Here, gene-targeted mice lacking the FXIII catalytic A subunit were employed to directly test the hypothesis that FXIII limits colonic pathologies associated with experimental colitis. Wildtype (WT) and FXIII-/- mice were found to be comparable in their initial development of mucosal damage following exposure to dextran sulfate sodium (DSS) challenge.

View Article and Find Full Text PDF