Unlabelled: The Alzheimer's disease (AD) research community continues to make great strides in expanding approaches for early detection and treatment of the disease, including recent advances in our understanding of fundamental AD pathophysiology beyond the classical targets: beta-amyloid and tau. Recent clinical trial readouts implicate a variety of non-amyloid/non-tau (NANT) approaches that show promise in slowing cognitive decline for people with AD. The Alzheimer's Association Research Roundtable (AARR) meeting held on December 13-14, 2022, reviewed the current state of NANT targets on underlying AD pathophysiology and their contribution to cognitive decline, the current data on a diverse range of NANT biomarkers and therapeutic targets, and the integration of NANT concepts in clinical trial designs.
View Article and Find Full Text PDFLaryngorhinootologie
May 2022
Numerous studies confirm that the vagus nerve stimulation (VNS) is an efficient, indirect neuromodulatory therapy with electrically induced current for epilepsy that cannot be treated by epilepsy surgery and is therapy-refractory and for drug therapy-refractory depression. VNS is an established, evidence-based and in the long-term cost-effective therapy in an interdisciplinary overall concept.Long-term data on the safety and tolerance of the method are available despite the heterogeneity of the patient populations.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) is a therapeutic procedure that can be applied in a palliative setting in patients with treatment-refractory epilepsy who are not suitable for epilepsy surgery. The mechanism of action of VNS is currently not completely understood but appears to depend on a modification of neurotransmitter metabolism. Data of 25 patients with treatment-refractory epilepsy who underwent implantation of a vagus nerve stimulator were retrospectively analyzed in a monocentric study.
View Article and Find Full Text PDFEncapsulated magnetic nanoparticles are of increasing interest for biomedical applications. However, up to now, it is still not possible to characterize their localized magnetic properties within the capsules. Magnetic Force Microscopy (MFM) has proved to be a suitable technique to image magnetic nanoparticles at ambient conditions revealing information about the spatial distribution and the magnetic properties of the nanoparticles simultaneously.
View Article and Find Full Text PDFMagnetic force microscopy (MFM) has become a widely used tool for the characterization of magnetic properties. However, the magnetic signal can be overlapped by additional forces acting on the tip such as electrostatic forces. In this work the possibility to reduce capacitive coupling effects between tip and substrate is discussed in relation to the thickness of a dielectric layer introduced in the system.
View Article and Find Full Text PDF